

Image Cytometer for Cell Counting & Analysis

PBMC Analysis in the Presence of Red Blood Cells

Measure PBMCs from whole blood without lysing. Obtain baseline PBMC concentration and viability prior to biomarker studies

Nucleated Cell Concentration & Viability

Evaluate cord blood and bone marrow samples

GFP Transfection Efficiency & Viability

Quickly and easily monitor DNA, RNA, and siRNA transfection

Analysis of Clumpy & Irregular-Shaped Cells

Nexcelom's proprietary pattern-recognition software enables accurate analysis of >98% of mammalian cell types

Cell Line Analysis

Automatically capture fluorescent cell images, concentration, Trypan blue or PI viability, and mean diameter in 60 seconds!

Analysis of Cells from Heterogeneous Samples

- Whole Blood
- Peripheral Blood
- Cord Blood
- Bone Marrow
- Bronchoalveolar Lavage (BAL)

Primary Hepatocytes: Cell Count and Viability

Cell Based Assays

- Cell Cycle
- Apoptosis

S GFP

• Clinical Immunology: PBMCs

- DMPK: Primary Hepatocytes
- Regenerative Medicine: Stem Cells
- Transplantation: Nucleated Cells
- Vaccine Development: Splenocytes
- Oncology: Cell Lines, Cell Cycle, Apoptosis
- Basic Research: Primary Cells / Cell Lines / GFP

BAL

Cellometer K2 Image Cytometer for Cell Counting & Analysis from Nexcelom Bioscience

The Cellometer K2 instrument is a simple, quick, visual cell counting platform. We love the clear images and easily discerned confirmation that the cell count data is real because you can see the count for your own two eyes. It has allowed us to move away from difficult flow cytometer and subjective hemocytometer methods.

How It Works

Pipette 20 µl of Cell Sample

Insert Counting Chamber

Select Assay & Click Count Assay: Immune cells, Iow RBC Cell Type F1: A_Immune Cells_Low RBC (AO) Cell Type F2: A_Immune Cells_Low RBC (PI) Sample ID: PBMC_AOPI_Dry demo-2 Dilution: 2.000

Dilution: 2.00	
Count	Concentration
Total: 1750	6.06x10^6 cells/mL
Total: 1750 Live: 1662 Dead: 88	5.75x10^6 cells/mL
Dead: 88	3.03x10^5 cells/mL

Mean Diameter 7.1 micron

7.2 microns 5.8 micron Viability: 95.0%

Get Results

Cellometer K2 Image Cytometer Optimized Analysis of Primary Cells

Features of the Cellometer K2

Dual Fluorescence and Bright Field Imaging: staining of both live and dead cells in heterogeneous samples

User-Friendly Software and Assay Selection: Enhanced inter-operator reproducibility, minimal training, auto-save option

Fast Results: Obtain cell images, counts, size measurements, and viability calculations in 60 seconds

Small Sample Size: Only 20 µl of sample

Broad Dynamic Range: Measurable concentration range of 1×10^5 to 1×10^7 cells/mL using Nexcelom's proprietary de-clustering function

Many Compatible Dyes: Trypan blue, AO, PI, EB, 7AAD, AO/PI, AO/EB, Calcein AM, CFDA, Calcein AM/PI, CFDA/PI

I am currently using the Cellometer K2 in our lab, mostly to count T cells, PBMCs, and tumor cells. I use them for cell culture, and later the cells are used for further assays like ELISA and FACS. The instrument is very accurate, especially with AOPI.

Advantages of Cellometer Image Cytometer

Cell Imaging

- Verify cell morphology and counted live/dead cells
- Export cell images for presentations and publications

Pattern Recognition Software

- Accurately count cells in clumps
- Count irregular-shaped cells
- Eliminate debris from cell counts
- Differentiate cells based on size

Automated Data Management

- Pre-set assays and automated reports
- Archive sample images and auto-save results

Maintenance-free System

- Disposable counting chambers no wash steps
- No required instrument maintenance

Learn why thousands of users, including the top ten pharmaceutical companies, trust Cellometer.

On-Line Demonstrations are completed in just 20 to 30 minutes and provide an overview of how Cellometer works using existing images of cells that interest you.

On-Site Demonstrations are a convenient way to test a Cellometer system for a specific application. An experienced Applications Specialist will arrive at your lab for a hands-on session to test your cells and show how Cellometer can enhance your workflow.

Technical Seminars are an excellent way to introduce Cellometer systems to a lab group or collaborators in different laboratories within an organization. A trained biologist will discuss and demonstrate the capabilities and advantages of Cellometer image cytometry.

Call 978-327-5340 or E-mail info@nexcelom.com today to schedule a free demonstration or technical seminar.

Dual-Fluorescence for Primary Cell Viability in Heterogeneous Samples

Live / Dead Cell Concentration using AO / PI

Dual-Fluorescence Viability, using acridine orange (AO) and propidium iodide (PI), is the recommended method for accurate viability analysis of primary cells, such as PBMCs, splenocytes, and stem cells, in samples containing debris and unwanted non-nucleated cell types including red blood cells.

Acridine orange (AO) and propidium iodide (PI) are nuclear staining (nucleic acid binding) dyes. AO is permeable to both live and dead cells and stains all nucleated cells to generate green fluorescence. PI enters dead cells with compromised membranes and stains all dead nucleated cells to generate red fluorescence.

Because mature mammalian red blood cells do not contain nuclei, only live and dead mononuclear cells produce a fluorescent signal. There is no need to lyse red blood cells, saving time and eliminating an extra sample preparation step.

Export to FCS Express* for Flow-Like Data Output

Cell Cycle

Apoptosis

81.9%

1.6%

1.9%

8.1%

1.3%

16.1%

4.0%

0.4%

9.3%

ol)		Treated (Positive Control)							
Debris	Debris		Apoptotic	Necrotic	Debris				
6.0%	AVE	58.8%	24.7%	13.8%	2.7%				
1.1%	STD	1.9%	1.1%	1.2%	0.2%				
18.3%	CV	3.2%	4.3%	9.0%	9.2%				

Performance of the Cellometer K2 Image Cytometer

Concentration Dynamic Range

Figure 1 depicts the dynamic range for cell concentration measurements on Cellometer K2. This data set was taken on a concentration series of cultured Jurkat cell line.

Samples from $1 \times 10^5 - 1 \times 10^7$ cells/ml can be counted without further dilution.

The %CV at each concentration was below 10%.

Figure 1. Table of results for cell concentration dynamic range

Viability Dynamic Range The viability dynamic range is 0 - 100% for Cellometer K2 Image Cytometer using dual fluorescence AO/PI stain.

Sample	N Value	Average Live Cell Concentration	% Viability	CV of Concentration	CV of Viability		
Jurkat	24	3.61E+06	92.2%	8.9%	1.0%		
Human PBMC	10	5.94E+06	96.0%	4.7%	0.5%		
Mouse Splenocyte	10	1.86E+07	88.6%	5.6%	0.7%		

Figure 2. Table of results for cell concentration and viability using AOPI

Consistency and Repeability The results indicate the accuracy of the Cellometer K2 instrument in assessing the viability of Jurkat cells using AOPI for cell viability. Jurkat, human PBMC, mouse splenocytes were tested at 24, 10, and 10 sample replications, respectively. The viability average was calculated and plotted. The results show the reliability and accuracy of the Cellometer K2 in measuring cell concentration and viability of mammalian cells.

The Cellometer K2 has drastically changed our work flow in the lab. We are able to gather cell counts in minutes rather than waiting overnight for colonies to grow on plates. It also cuts down time in the prep of plating and error in plating/counting. The amount of time that the machine has saved us is incalculable - it has allowed us to move projects along much more quickly and with confidence. - Synlogic

Cellometer Cell Counters, Cell Analysis Systems & Image Cytometry

Nexcelom offers a wide range of Cellometer systems developed and optimized for specific applications and cell types.

www.nexcelom.com/products

Cellometer[®] Simply Counted

66

For more information, visit www.nexcelom.com

Contact us at: Nexcelom Bioscience 360 Merrimack Street, Building 9 Lawrence, MA 01843, USA

Email: info@nexcelom.com Phone: 978.327.5340 Fax: 978.327.5341

	Features	Bright Field Cell Counters			Fluorescent Viability Cell Counters				Image Cytometers				
			Auto T4	Auto 1000	Auto 2000	X1	X2	К2	Vision CBA	Vision CBA (10x)	Celigo BF	Celigo 4 Channel	Celigo 5 Channe
	Cell / Sample Type												
	Cell Line	х	x	х	Х			х	х		х	х	х
	Cultured Primary Cells	х	х	х	х			х	х		х	х	х
	Algae									х			
	Platelets						Х			х			
	Low Concentration Cell Lines				х			х	Х		х	х	х
	Yeast (Clean Sample)					х	х			х			
	Yeast (Messy Sample)						Х			Х			
	Primary cells (Messy Sample*)				Х			Х	х			х	х
	PBMCs, Splenocytes, Stem Cells				Х			Х	Х			Х	Х
	Hepatocytes							Х	Х			Х	Х
	Adipocytes***				Х			Х	Х		х	Х	Х
	Cell-Based Assay **					Х	Х	Х	Х	Х	Х	Х	Х
	Apoptosis (Annexin V-FITC/PI)							Х	Х	х		Х	Х
	Apoptosis (Caspase Activity)							Х	Х	х		Х	Х
	Autophagy (CytolD-green)								Х	Х			
	Cell Proliferation (CFSE)								Х	х		Х	Х
	Cell Cycle (PI)					Х	Х	Х	Х	Х		Х	Х
	GFP Transfection				Х		Х	Х	Х	Х		Х	Х
	RFP Transfection								Х	Х		Х	Х
	Mitochondrial Potential (JC-1)								Х	Х		Х	Х
	Multi-drug Resistance (ABC Transporter)								х	х		х	х
	Surface Marker Analysis								Х	Х		Х	Х
	Vitality (Calcein-AM/PI)						Х	Х	Х	х		Х	Х
	Vitality (CFDA-AM)						Х						
	Image Cytometry**								Х	х		х	Х